

IYUNIVESITHI

UNIVERSITEIT

Cytokines and Biomarkers of Cancer Cachexia and their Relationship to Markers of Nutritional Status, Inflammation and Quality of life

Lipshitz M,^{1,2} Visser J,¹ Anderson R,³ Nel DG,⁴ Smit T,⁵ Steel H,³ Rapoport B,^{3,5}

¹Division of Human Nutrition, Stellenbosch University, South Africa ²Melanie Levy Dietician, Johannesburg, South Africa ³Department of Immunology, University of Pretoria, South Africa ⁴Centre for Statistical Consultation, Stellenbosch University, South Africa ⁵The Medical Oncology Centre of Rosebank, Johannesburg, South Africa,

VERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

Introduction and Aim

- Cancer cachexia can cause more than 20% of deaths in cancer with **sarcopenia and** Quality of Life (QoL), independently predicting survival.
- Cachexia research suggests that biomarkers of cachexia are related to QoL and nutritional status however, the ideal biomarker for cachexia assessment, prognosis and
- 43% of percent of cases were sarcopenic with a significantly lower SMI [6.67kg/m² (±1.34) vs. 7.67kg/m² (± 1.08) , p=<0.01] compared to controls (Figure 1).

Results

- For all sectors of QoL assessment: QoL [Global Status (QL-G), Functional Scales (QL-FS) and Symptom
 - Scales (QL-SS)] cases scored significantly different (p<0.01) compared to reference values.
- Significant differences were found for albumin, lymphocytes, platelets, haemoglobin, platelet to lymphocyte ratio (PLR), systemic immune-inflammation index (SII), CRP, TNFα, all at p<0.01, neutrophil to lymphocyte ratio (NLR) (p=0.02), IL-6 (p<0.04) and IL-8 (p=0.02) between cases and controls (Table 1). No difference was found for CXCL5 (p=0.22) or H3Cit (p=0.99) between the groups.

blockade remains to be identified.

- **Emerging biomarkers** require baseline research of their relationships to cachexia and sarcopenia.
- The aim of the study was: i) to establish differences in biomarkers of cachexia, nutritional status and QoL between patients with cancer cachexia and healthy matched controls, ii) to explore the **relationships and** correlations of these markers to nutritional status and QoL.

Long-term aim: to improve knowledge of the relationships between emerging biomarkers of cancer cachexia, nutritional status and QoL so that future treatments may target

ROC curve analysis indicated that CXCL5 (0.59) and H3Cit (0.56) ranked the lowest of all markers (Figure) 2) while PLR, CRP and TNF α were the top ranking biomarkers with areas under the curve (AUC) of 0.84, 0.80 and 0.79 respectively.

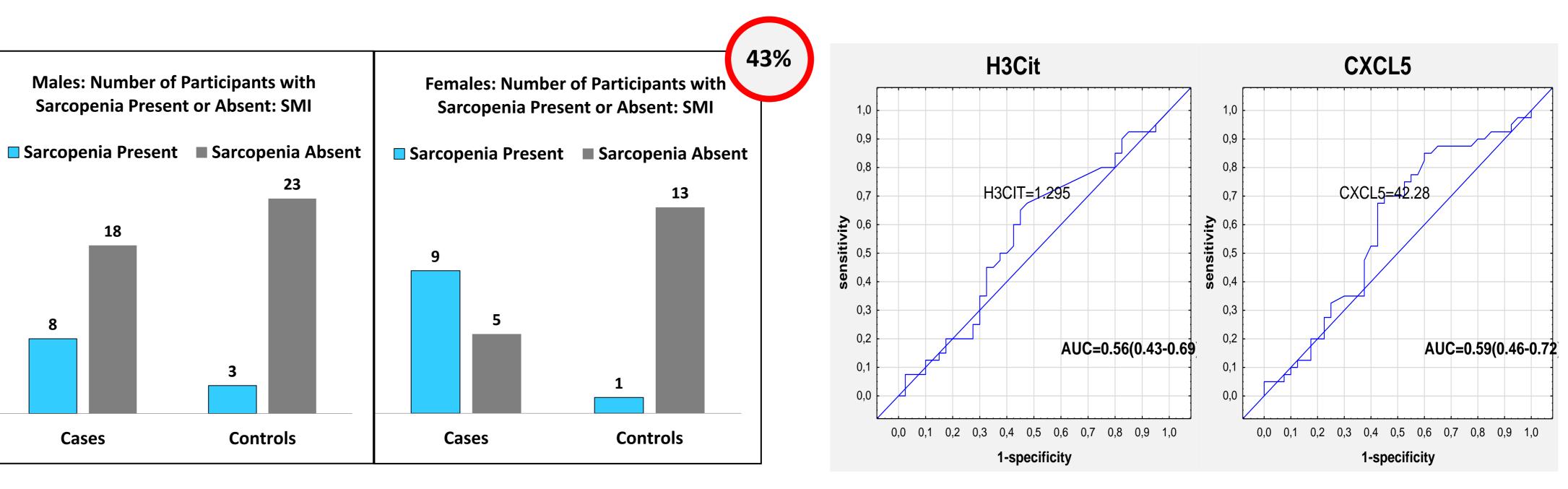


Figure 1: Presence of sarcopenia according to Skeletal Muscle Index (SMI)

Figure 2: Receiver Operating Characteristic (ROC) curves for cut-offs: H3Cit and CXCL5

For SMI, biomarkers that showed significance to the presence or absence of sarcopenia were albumin (p=0.03), Hb (p=0.008) and TNF α (p=0.036) (Figure 3). \Box Only albumin, NLR, Hb, PLR, SII, TNF α , IL-8 and CRP showed significant correlations to all three QoL

sectors (Table 2).

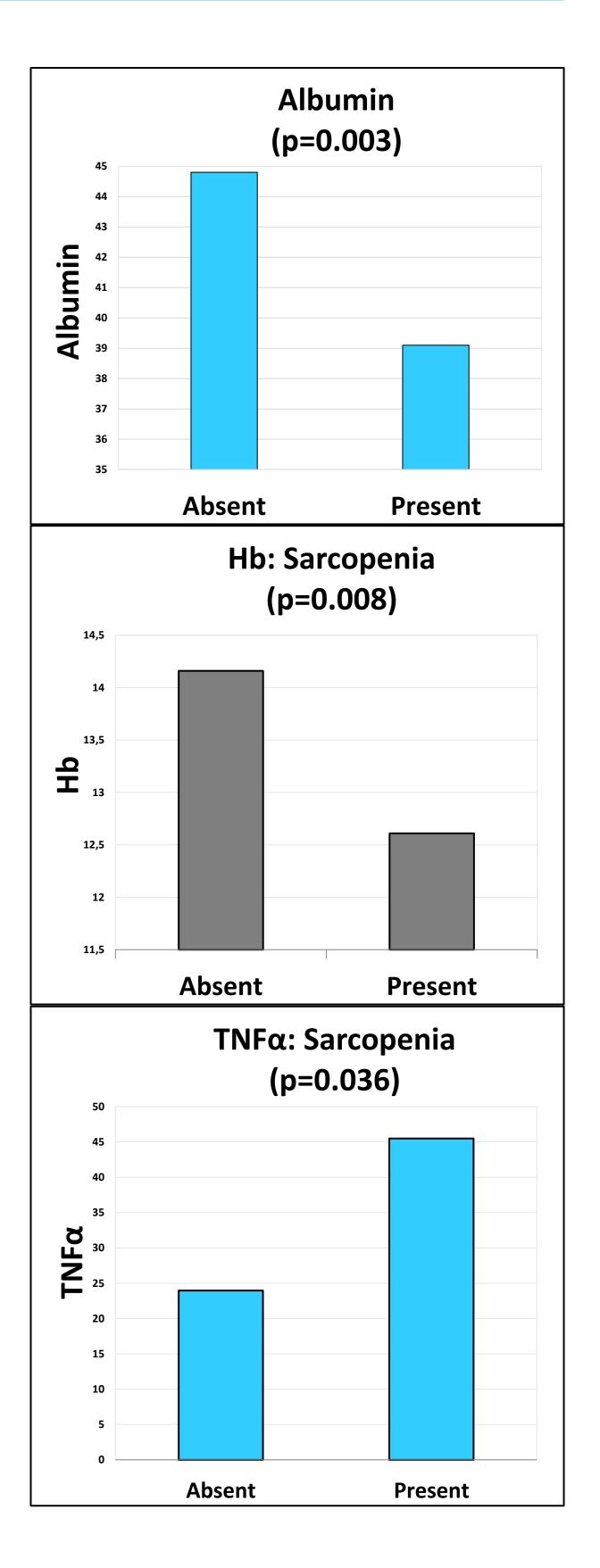
cachexia and ultimately prognosis.

Methods

Using cut-offs for biomarkers and categories for sarcopenia CRP was significantly related to the

presence and absence of sarcopenia (p=0.007) (Figure 4).

Using cut-offs for biomarkers and QL-FS, CXCL5 significantly correlated to QL-FS (p=0.04) (Figure 6).


Prospective case-control study: including 40 patients with advanced cancer, mixed diagnoses and 40 gender, age-matched controls.

Nutritional status was assessed using sarcopenia [skeletal muscle index (SMI) from bioelectrical impedance] and QoL was measured using the European Organization for the Research and Treatment of Cancer Quality of Life-C30 assessment (EORTC-QLQ-C30).

Biomarkers assessed: albumin, haemoglobin

Table 1: Summary of biomarker analysis results

/larker	Reference	Cases	Controls	P-value	P-value
	Ranges			(Cases vs	. (Cases vs.
				Controls	Reference
					Constant)
lbumin (g/L)	35-50	39.66 (±6.41)	46.99 (±2.21)	P < 0.01	
lb (g/dL)	13.8-18.8	12.38 (±2.04)	15.13 (±0.92)	P < 0.01	
ILR	2.73	4.85 (±6.59)	2.31 (±1.10)	P = 0.02	P = 0.008
LR	148.82	232.90 (±119.70)	119.18 (±34.63)	P < 0.01	P < 0.001
II	791.96	1387.35 (±1866.47)	543.54 (±301.74)	P < 0.01	P = 0.051
RP (mg/L)	2.775	31.65 (±56.54)	2.78 (±6.72)	P < 0.01	P = 0.002
NFα (pg/mL)	20.745	43.52 (±52.77)	15.69 (±13.51)	P < 0.01	P = 0.009
6 (pg/mL)	4.39	41.13 (±6.87)	35.64 (±69.07)	P = 0.04	P < 0.001
8 (pg/mL)	9.175	33.08 (±59.90)	29.85 (±81.53)	P = 0.02	P = 0.023
XCL5 (pg/mL)	42.28	91.37(±140.30)	61.74 (±59.01)	P = 0.22	P = 0.033
3Cit (ng/mL)	1.295	2.38(±2.88)	2.38 (±6.72)	P = 0.99	P = 0.023
	•	L-FS x CXCL5 Cut Off 21 Fisher Exact p=0.04	Table 2 : Bion correlatio		ith significa L sectors
20 18	61%		Biomarker	QoL-G Q	oL-FS QoL-SS
16 - 14 -			Albumin	+	+ -
S 12 10			Hb	+	+ -
		100%	NLR	- NO	O SIG +
o ⁸			PLR	-	- +
					-
2 ⁸			SII	-	- +
2 ⁸ <u>6</u> <u>4</u> <u>6</u> <u>7</u>	Above	Below Above	SII TNFa	-	
9 ⁸ 6 4 2 0 Below	Above 5 Cut Off	Below Above CXCL5 Cut Off	SII TNFα IL-8	-	- + - + - +

- (Hb), neutrophils, lymphocytes, platelets, Creactive protein (CRP), tumor necrosis factor alpha (TNFα), Interleukin-6 (IL-6), Interleukin-8 (IL-8), C-X-C motif chemokine ligand 5 (CXCL5) and citrullinated histone H3 (H3Cit).
- Descriptive statistics & regression analyses for correlations were undertaken, using Receiver Operator Characteristic (ROC) curve analysis to determine reference values for the group.

Figure 4: CXCL5 correlations to QL-FS

Figure 3: Biomarkers showing significance to the presence of sarcopenia

Conclusions

CRP, albumin and haemoglobin consistently showed baseline differences between cases and controls and in further correlations to nutritional status and QoL.

 \Box NLR, PLR, SII, TNF α , IL-6 and IL-8 showed inconsistent correlations of significance to baseline assessments.

Emerging biomarkers CXCL5 and H3Cit were not found to be reliable biomarkers for cancer cachexia in defining correlations to nutritional status and QoL.